Evaluating Pumping Plant Efficiency using On-farm Fuel Bills

Every farmer needs to make a profit in order to continue farming. Traditionally, farming has not made a large return on investment, so when production costs rise in comparison to crop price and/or yield, profits can quickly turn into deficits. Irrigators are also subject to this economic reality, so they need to evaluate the cost-effectiveness of production inputs. One component is irrigation fuel. The irrigator should know whether irrigation costs are reasonable and whether irrigation is paying its way.

The irrigation fuel or energy bill is composed of two parts. The first is related to pumping plant performance and the second to crop and irrigation management.

Total fuel bill = Pumping Cost / Volume X Volume Applied

Reducing the total volume applied reduces the fuel bill proportionately — if the amount of water applied is minimized with good irrigation scheduling and high application efficiency, the fuel bill will also be reduced by a similar amount. How this is done is the subject of other extension bulletins and will not be discussed here.

The major factors that influence the pumping cost per volume are: fuel price, pumping plant efficiency and total dynamic head (TDH). TDH is the total hydraulic resistance against which the pump must operate. Well efficiency is also a factor, but it is largely determined by design and construction factors that were used during the drilling and development processes. Many wells would produce a greater flow with less drawdown if the screen, gravel pack and development procedure had been better designed, but little can be done to improve the efficiency of a poorly constructed well. Well efficiency can also be affected by incrustation of the well screens that might occur due to chemical reactions between the well screen and water and/or biological processes. The former may require aggressive cleaning to remove, while the latter might be controlled by shock chlorination.

Performance evaluations indicate that, on average, irrigation pumping plants in Kansas use about 30 percent more fuel than necessary if not properly sized, adjusted and maintained. For example, a 1990 Kansas study (KGA, 1990) (Table 1a) found pumping plant performance ratings ranging from 15 to 120 percent of the Nebraska Pumping Plant Performance Criteria (NPC). NPC values are accepted industry estimate of the energy consumption for a properly designed and operated pumping plant. Obviously, some are much worse and others much better. Table 1b shows the test data by energy source.

Causes of excessive fuel use include:

1. Poor pump selection. Pumps are designed for a particular discharge, head and speed. If used outside a fairly narrow range in head, discharge and speed, the efficiency is apt to suffer. Some pumps were poor choices for the original condition. Changing conditions such as lower water levels or changes in pressure also cause pumps to operate inefficiently.
2. Pumps out of adjustment. Pumps need adjustment from time to time to compensate for wear.
3. Worn-out pumps. Pumps also wear out with time and must be replaced.
4. Improperly sized engines or motors. Power plants must be matched to the pump for efficient operation. Engine or motor loads and speed are both important to obtain high efficiency.
5. Engines in need of maintenance and/or repair.
6. Improperly matched gear heads. Gear head pump drives must fit the load and speed requirements of the pump and engine.

Pumping plant performance evaluations can be obtained by hiring a consulting firm or contractor to take the measurements, but many farmers are reluctant to spend money to find out if something is wrong. Energy costs, however, can represent a significant portion of the production cost for a crop. The following will help an irrigator analyze irrigation fuel or energy bills to see if they are within reason considering the pumping conditions and price of fuel or energy.

Irrigation pumping energy requirements, as discussed previously, can be estimated using NPC and are shown in Table 2. Some pumping plants may exceed this criteria, but most will not.
If this estimate indicates low pumping plant efficiency, then hiring a firm to repair or replace the pumping plant may be justified.

The irrigator needs the following information to make such an estimate:
1) Acres irrigated
2) Discharge rate
3) Total dynamic head
4) Total application depth
5) Total fuel bill
6) Fuel price/unit

STEP 1: DETERMINE WATER HORSEPOWER

Water horsepower (WHP) is the amount of work done on the water and is calculated by

\[
WHP = (TDH) \times (\text{GPM} \div 3960)
\]

where:
- GPM = discharge rate in gallons per minute
- TDH = total dynamic head (in feet)
- 3960 = Constant (see conversion in Table 3)

TDH is usually estimated by adding total pumping lift and pressure at the pump. Since pressure is usually measured in PSI, convert PSI to feet by multiplying (PSI) x (2.31) (see conversions in Table 3).

STEP 2: CALCULATE HOURS OF PUMPING

\[
HR = (D) \times (AC) \div (\text{GPM} \div 450)
\]

where:
- HR = Hours of pumping
- D = Depth of applied irrigation water (inches)
- AC = Acres irrigated
- GPM = discharge rate in gallons/minutes
- 450 = Constant (see conversion in Table 3)

STEP 3: ESTIMATE HOURLY NPC FUEL USE

\[
FU = \left(\frac{\text{WHP}}{\text{NPC}}\right)
\]

where:
- FU = Hourly fuel use using the Nebraska criteria
- WHP = Water Horsepower from Step 1
- NPC = Nebraska Performance Criteria (Table 2)

STEP 4: ESTIMATE SEASONAL NPC FUEL COST

\[
SFC = (FU) \times (HR) \times (\text{Cost})
\]

where:
- SFC = Seasonal Fuel Cost if the pumping plant was operating at NPC
- HR = Hours of operation from Step 2
- Cost = $/Fuel Unit

STEP 5: DETERMINE EXCESS FUEL COST

\[
EFC = (\text{AFC}) - (\text{SFC})
\]

where:
- EFC = Excess Fuel Cost (in dollars)
- AFC = Actual Fuel Cost (in dollars)
- SFC = Estimated Seasonal Fuel Cost using NPC (in dollars)

STEP 6: CALCULATE ANNUALIZED REPAIR COST

\[
\text{ARC} = (\text{INVEST}) \times (\text{CRF})
\]

where:
- ARC = Annualized Repair Cost
- INVEST = Investment required to repair or upgrade pumping plant
- CRF = Capital Recovery Factor (see Table 4)

The excess fuel cost may be thought of as the annual payment to cover the cost of a pumping plant upgrade or repair. Repair costs can be annualized by using capital recovery factors (CRF). If the annualized repair cost for the interest rate and return period selected is less than the excess fuel cost, the investment in repair is merited.

This procedure is an indicator of total pump plant performance. It does not indicate the source of the excessive fuel use, but pumping plant tests in Kansas have generally shown that poor performance is generally the fault of

Table 1a. Summary of Well and Pumping Plant Performance Testing Data from the Dakota Aquifers Program, (MacFalane, P.A., et.al., 1990)

<table>
<thead>
<tr>
<th>Area</th>
<th>Static Level Ft.</th>
<th>Dynamic Level Ft.</th>
<th>Well Yield Gpm</th>
<th>NPC Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwest</td>
<td>240 (70-330)</td>
<td>277 (160-430)</td>
<td>774 (170-1230)</td>
<td>85 (40-120)</td>
</tr>
<tr>
<td>West Central</td>
<td>109 (30-330)</td>
<td>142 (40-280)</td>
<td>668 (400-1050)</td>
<td>81 (30-115)</td>
</tr>
<tr>
<td>North Central</td>
<td>49 (25-100)</td>
<td>98 (40-155)</td>
<td>432 (275-860)</td>
<td>61 (15-110)</td>
</tr>
</tbody>
</table>

Notes:
1. Values are average to the nearest whole number except for range, note 2.
2. Range of values in () to nearest five units.

Table 1b. Summary of Pumping Plant Performance Evaluation by Energy Source from the Dakota Aquifer Program (MacFarlane, P.A., et. al., 1990)

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>No. of Wells</th>
<th>Average (%)</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>32</td>
<td>85.5</td>
<td>112.1</td>
<td>96.1</td>
<td>80.3</td>
<td>53.4</td>
</tr>
<tr>
<td>Electric</td>
<td>18</td>
<td>77.4</td>
<td>107.3</td>
<td>87.0</td>
<td>69.9</td>
<td>45.4</td>
</tr>
<tr>
<td>Diesel</td>
<td>17</td>
<td>69.9</td>
<td>97.8</td>
<td>81.2</td>
<td>66.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Propane</td>
<td>4</td>
<td>47.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

71 total - Weighted average 77.3%
the pump. The low efficiency may be due to excessive pump clearance, worn impellers, or changes in pumping conditions since the pump was installed. However, engines and gear heads can also be problems.

Kansas State Research and Extension has computer software available to aid in evaluating pumping plant efficiency. The software program, FuelCost, is available via the Web at www.oznet.ksu.edu/mil.

Example Farm Problem:

- **Acreage:** 122 acres
- **Pumping Lift:** 300 feet
- **System Pressure:** 22 psi
- **System Discharge Rate:** 800 gpm
- **Total Irrigation Application:** 18 inches per acre
- **Fuel Type:** Natural Gas
- **Price:** $8.00 per MCF
- **Total Fuel Bill:** $19,700

Step 1: Determine Water Horsepower

\[
WHP = (TDH) \times (GPM \div 3960) \\
= (300 + (22 \times 2.31)) \times (800 \div 3960) \\
= 71 \text{ Water Horsepower}
\]

Step 2: Calculate Hours of Pumping

\[
HR = (D) \times (AC) \div (GPM \div 450) \\
= (18) \times (122) \div (800 \div 450) \\
= 1,235 \text{ hours}
\]

Step 3: Estimate Hourly NPC Fuel Use

\[
FU = \frac{WHP}{\text{(NPC)}} \\
(71) \div (62.7) \\
= 1.15 \text{ MCF/hour}
\]

Step 4: Estimate Seasonal NPC Fuel Cost

\[
SFC = (FU) \times (Hr) \times \text{(Cost)} \\
= (1.15) \times (1,235) \times ($8.00) \\
= $11,362
\]

Step 5: Determine Excess Fuel Cost

\[
EFC = (AFC) - (SFC) \\
= ($19,700) - ($11,362) \\
= $8,338
\]

Step 6: Calculate Annualized Repair Cost

- **Estimate of REPAIR cost:** $12,000
- **Desired CRF using 3 years and 7% interest from Table 4:** CRF = 0.3811

\[
ARC = (\text{REPAIR}) \times \text{(CRF)} \\
= ($12,000) \times (0.3811) \\
= $4,573
\]

Since $4,573 is less than $8,338, the investment in repair of the pumping plant would be merited. The excess fuel use could be divided by the CRF (example $8,347/.3811 = $21,902) to indicate the amount you could afford to spend in upgrading the pumping plant to meet Nebraska Pumping Plant Performance Criteria (NPC).

This analysis can be completed for your farm using the following charts. However, a computer program called FuelCost is available to facilitate estimating pumping plant efficiency. The program is available on the Mobile Irrigation Lab (MIL) Web site at www.oznet.ksu.edu/mil.

Table 2. Nebraska Performance Criteria for Pumping Plants

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>WHP-HRS per Unit or Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>12.50 per gallon</td>
</tr>
<tr>
<td>Propane</td>
<td>6.89 per gallon</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>61.7 per MCF</td>
</tr>
<tr>
<td>Electricity</td>
<td>0.885 per KWH (kilowatt-hour)</td>
</tr>
</tbody>
</table>

Table 3. Useful Irrigation Conversions

- 1 psi (pounds per square inch) = 2.31 feet of head
- 1 acre-inch/hour = 450 gallons/minute
- 1 horsepower = 33,000 ft-lbs/min
- 1 gallon of water = 8.33 pounds

\[
3960 = \frac{33,000}{8.33}
\]

Table 4. Selected Capital Recovery Factors (CRF)

<table>
<thead>
<tr>
<th>Length of Load or Length of Useful Life Years</th>
<th>Annual Interest Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>.5378</td>
</tr>
<tr>
<td>3</td>
<td>.3672</td>
</tr>
<tr>
<td>4</td>
<td>.2820</td>
</tr>
<tr>
<td>5</td>
<td>.2310</td>
</tr>
<tr>
<td>7</td>
<td>.1728</td>
</tr>
<tr>
<td>10</td>
<td>.1295</td>
</tr>
<tr>
<td>15</td>
<td>.0963</td>
</tr>
</tbody>
</table>
Your Farm: Pumping Plant #1

Acreage:	________________ Ac		
Pumping Lift:	____________ Ft		
System Pressure:	______ PSI		
System Discharge Rate:	______ GPM		
Total Irrigation Application:	_____ In.		
Fuel Type:	______	Price:	______
Total Fuel Bill:	$__________		

Step 1: Determine Water Horsepower

\[\text{WHP} = (\text{TDH}) \times (\frac{\text{GPM}}{3960}) = \left[\text{ft} + \left(\frac{\text{PSI} \times 2.31}{\text{GPM}} \right) \right] \times \left(\frac{\text{GPM}}{3960} \right) = ___ \text{ WHP} \]

Step 2: Calculate Hours of Pumping

\[\text{HR} = (\text{D}) \times (\frac{\text{AC}}{\text{GPM} ÷ 450}) = (____ \text{ in}) \times (____ \text{ AC}) ÷ (____ \text{ GPM} ÷ 450) = _____ \text{ hours} \]

Step 3: Estimate Hourly NPC Fuel Use

\[\text{FU} = (\frac{\text{WHP}}{\text{NPC}}) = (______) ÷ (______) = _____ \text{ MCF/hour} \]

Step 4: Estimate Seasonal NPC Fuel Cost

\[\text{SFC} = (\text{FU} \times (\text{Hr}) \times (\text{Cost})) = (______) \times (______) \times ($______) = $_______ \]

Step 5: Determine Excess Fuel Cost

\[\text{EFC} = (\text{AFC}) - (\text{SFC}) = ($_____)$ - ($______) = $_______ \]

Step 6: Calculate Annualized Repair Cost

\[\text{ARC} = (\text{REPAIR}) \times (\text{CRF}) = ($_____)$ \times (______) = $_______ \]

Your Farm: Pumping Plant #2

Acreage:	________________ Ac		
Pumping Lift:	____________ Ft		
System Pressure:	______ PSI		
System Discharge Rate:	______ GPM		
Total Irrigation Application:	_____ In.		
Fuel Type:	______	Price:	______
Total Fuel Bill:	$__________		

Step 1: Determine Water Horsepower

\[\text{WHP} = (\text{TDH}) \times (\frac{\text{GPM}}{3960}) = \left[\text{ft} + \left(\frac{\text{PSI} \times 2.31}{\text{GPM}} \right) \right] \times \left(\frac{\text{GPM}}{3960} \right) = ___ \text{ WHP} \]

Step 2: Calculate Hours of Pumping

\[\text{HR} = (\text{D}) \times (\frac{\text{AC}}{\text{GPM} ÷ 450}) = (____ \text{ in}) \times (____ \text{ AC}) ÷ (____ \text{ GPM} ÷ 450) = _____ \text{ hours} \]

Step 3: Estimate Hourly NPC Fuel Use

\[\text{FU} = (\frac{\text{WHP}}{\text{NPC}}) = (______) ÷ (______) = _____ \text{ MCF/hour} \]

Step 4: Estimate Seasonal NPC Fuel Cost

\[\text{SFC} = (\text{FU} \times (\text{Hr}) \times (\text{Cost})) = (______) \times (______) \times ($______) = $_______ \]

Step 5: Determine Excess Fuel Cost

\[\text{EFC} = (\text{AFC}) - (\text{SFC}) = ($_____)$ - ($______) = $_______ \]

Step 6: Calculate Annualized Repair Cost

\[\text{ARC} = (\text{REPAIR}) \times (\text{CRF}) = ($_____)$ \times (______) = $_______ \]

Your Farm: Pumping Plant #3

Acreage:	________________ Ac		
Pumping Lift:	____________ Ft		
System Pressure:	______ PSI		
System Discharge Rate:	______ GPM		
Total Irrigation Application:	_____ In.		
Fuel Type:	______	Price:	______
Total Fuel Bill:	$__________		

Step 1: Determine Water Horsepower

\[\text{WHP} = (\text{TDH}) \times (\frac{\text{GPM}}{3960}) = \left[\text{ft} + \left(\frac{\text{PSI} \times 2.31}{\text{GPM}} \right) \right] \times \left(\frac{\text{GPM}}{3960} \right) = ___ \text{ WHP} \]

Step 2: Calculate Hours of Pumping

\[\text{HR} = (\text{D}) \times (\frac{\text{AC}}{\text{GPM} ÷ 450}) = (____ \text{ in}) \times (____ \text{ AC}) ÷ (____ \text{ GPM} ÷ 450) = _____ \text{ hours} \]

Step 3: Estimate Hourly NPC Fuel Use

\[\text{FU} = (\frac{\text{WHP}}{\text{NPC}}) = (______) ÷ (______) = _____ \text{ MCF/hour} \]

Step 4: Estimate Seasonal NPC Fuel Cost

\[\text{SFC} = (\text{FU} \times (\text{Hr}) \times (\text{Cost})) = (______) \times (______) \times ($______) = $_______ \]

Step 5: Determine Excess Fuel Cost

\[\text{EFC} = (\text{AFC}) - (\text{SFC}) = ($_____)$ - ($______) = $_______ \]

Step 6: Calculate Annualized Repair Cost

\[\text{ARC} = (\text{REPAIR}) \times (\text{CRF}) = ($_____)$ \times (______) = $_______ \]